
1

Computer Sciences Corporation
Numerical Aerodynamic Simulation

NASA Ames Research Center, M/S 258-6
Moffett Field, CA 94035-1000

(415)604-4319
e-mail: f ineberg@nas.nasa.gov

1. This work was supported through NASA contract NAS 2-12961.

Abstract
Multidisciplinary andmulti-zonal applications are an important class of applica-
tions in the area of Computational Aerosciences. In these codes, two or more dis-
tinct parallel programs or copies of a single program are utilized to model a single
problem. To support such applications, it is common to use a programming model
where a program is divided into several single program multiple data stream
(SPMD) applications, each of which solves the equations for a single physical dis-
cipline or grid zone. These SPMD applications are then bound together to form a
singlemultidisciplinary or multi-zonal program in which the constituent parts
communicate via point-to-point message passing routines. Unfortunately, simple
message passing models, like Intel’s NX library, only allow point-to-point and glo-
bal communication within a single system-defined partition. This makes imple-
mentation of these applications quite difficult, if not impossible. In this report it is
shown that the new Message Passing Interface (MPI) standard is a viable portable
library for implementing the message passing portion of multidisciplinary applica-
tions. Further, with the extension of a portable loader, fully portable multidisci-
plinary application programs can be developed. Finally, the performance of MPI is
compared to that of some native message passing libraries. This comparison shows
that MPI can be implemented to deliver performance commensurate with native
message passing libraries.

Implementing Multidisciplinary and
Multi-zonal Applications Using MPI

Report NAS-95-003 January 1995

Samuel A. Fineberg1

2

1.0 Introduction and Background

Multidisciplinary andmulti-zonal applications are an important class of programs
in the area of Computational Aerosciences. In these codes, two or more distinct
parallel applications or copies of a single application are utilized to model a single
problem [BaW93]. To support such programs, it is common to use a programming
model where an application is divided into several single program multiple data
stream (SPMD) applications, each of which solves the equations for a single phys-
ical discipline or a particular portion of a data set (i.e., a grid zone). These SPMD
applications are then bound together to form a singlemultidisciplinary or multi--
zonal program in which the constituent parts communicate via point-to-point mes-
sage passing routines. Unfortunately, simple message passing models, like Intel’s
message passing library (NX) or Thinking Machines’ message passing library
(CMMD), only allow point-to-point and global communication within a single
system-defined partition. This makes implementation of multidisciplinary applica-
tions quite difficult, if not impossible.

Several non-portable libraries have been implemented to solve this problem. These
include the intercube library for the iPSC/860 [Bar91] and the Map library for the
Paragon [Fin93c]. Neither of these solutions allow a single source code to be used
across multiple systems. To develop portable multidisciplinary programs, there are
several requirements. First, one must have a portable message passing library that
is capable of supporting multiple process1 groups, collective communication
within process groups, and inter-group communication. Second, one must have a
portable loader that is capable of starting multiple, possibly different, programs as
a single multidisciplinary application. Finally, this loader must have some way of
telling the programs it has loaded about where the different applications reside.
Otherwise it would be impossible to communicate between applications.

There are, of course, quite a few portable message passing libraries. Of these, sev-
eral provide the support necessary for multidisciplinary process groups and collec-
tive communication. Two of these are PVM [GeS91, GeB93] and MPI [Mes94].
These libraries are available for most MPP systems as well as for networks of
workstations. MPI was chosen as the preferable message passing library for sev-
eral reasons. First, while MPI is still new, it is a standard. Therefore, it is not
expected to undergo the constant changes that other libraries, most notably PVM,
suffer from. In addition, from a performance perspective, MPI should perform bet-
ter on MPP systems than PVM. This is primarily due MPI’s statically defined
group structures, and its ability to be implemented without buffering. While these
factors should enable MPI to perform better than PVM, MPI will still be worse
than native libraries until it is directly supported by vendors. To date, only IBM
Research has provided a vendor optimized version of MPI. This version is still
experimental, but it shows promise because its performance is as good or better
than IBM’s proprietary message passing library. Supported vendor implementa-

1. In this paper, the term “process” will be used instead of “processor” or “node.” This refers to the fact that
more than one MPI “process” may be present on a single processor of a parallel system.

3

tions of MPI should begin to appear in the coming year and hopefully will begin to
replace vendor specific libraries. For more information on performance issues see
Section 5.

Portable loaders, however, are far more difficult to find. PVM does provide pro-
gram loading facilities, and does support multiple executables within a single job.
However, it does not provide a portable means for determining where applications
have been loaded. MPI does not provide any loading facilities, therefore, all load-
ing must be done using means external to MPI. In this paper, a portable loader
interface, MPIRUN, is described. MPIRUN may be implemented on virtually any
MPP system or workstation network, and it is simpler than the loader provided by
PVM. This simplicity makes it far easier to integrate MPIRUN with existing
resource allocation and scheduling software. Finally, MPIRUN not only loads user
programs, but also provides run-time loading information needed to initiate inter--
application communication.

2.0 MPI Basics

MPI has several features that make it ideal for multidisciplinary program develop-
ment. In this section some MPI basics will be presented, followed with the
advanced features necessary for multidisciplinary and multi-zonal applications.
This paper assumes that the reader has knowledge of some other message passing
library, e.g., NX, CMMD, etc., and many of the details are left to the reader. For a
complete specification of MPI see the standard [Mes94].

2.1 Basic send and receive operations

MPI provides a vast array of communication operations. Unfortunately, since the
only guide to writing MPI programs to date is the standard [Mes94], one can easily
become daunted by the amount of functionality provided by MPI. However, for
most programs one can ignore most of these features. For simple point to point
message passing most users can and should stick with the basicMPI_Send and
MPI_Recv synchronous send/receive operations. These basic operations are anal-
ogous to thecsend operation in NX or theCMMD_send_block in CMMD.
MPI is also capable of performing asynchronous message passing, using the
MPI_Isend and MPI_Irecv operations.2 TheMPI_Send operation is spec-
ified as follows:

int MPI_Send(void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

for C, or for FORTRAN:

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

2. MPI also provides several other “modes” for communication, i.e., synchronous, ready, buffered. In some
cases these modes may provide easier conversion to MPI. However, the basic send and receive operations
should provide the highest level of portability and performance.

4

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Several of these parameters should appear familiar to readers experienced with NX
or CMMD. buf specifies what data to send. In MPI, buffers are “typed,” i.e., all
messages contain data of some specific type. The type could beINTEGER,
REAL, DOUBLE PRECISION , etc. for FORTRAN; or int, f loat, dou-
ble , etc. for C. In general, MPI supports any basic data type that the programming
language (e.g., C or FORTRAN) supports. In addition, MPI supports “untyped”
data by passing it as a series of bytes (using theMPI_BYTE data type).3 When
sending MPI messages, thecount is the number of elements of data type
“datatype ” in buf . Therefore, ifbuf is an array of integers,count would be
the number of integers inbuf anddatatype would beMPI_INT (for C) or
MPI_INTEGER (for FORTRAN). If buf is a single double precision number,
count would be 1 anddatatype would beMPI_DOUBLE or MPI_DOUBLE_-
PRECISION. This differs from many other message passing systems because
count is not the number of bytes inbuf . This was implemented in order to
ensure portability between systems that have different size data types. In addition,
it enables MPI to be implemented for heterogenous environments, i.e., data can be
converted between different formats.4 tag is used as a selector between messages
sent to the same process.5 dest specifies the “rank” of the process to which the
message is to be sent. A rank is roughly the same thing as a process or processor
number in most systems. The difference is that all ranks are relative to some
grouping of the system’s processes specified by a “communicator” (comm). Nor-
mally, most programs can use the pre-defined communicatorMPI_COMM_WORLD.
This communicator includes all processes in a user’s program, so a rank relative to
it will be the same as a processor number on most systems. More information on
communicators will be presented in Section 2.3. The final parameter of
MPI_Send , IERROR, is used for returning an error value to FORTRAN programs
(in C this value is returned directly by the functionMPI_Send). This return value
can be used to determine if the send was successful or not.

MPI_Recv is specified as follows:

int MPI_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

3. Another advanced feature of MPI not discussed in this paper is derived datatypes. These allow buffers to
contain elements that are different basic data types (like C structures). In addition, derived types can be used to
specify strided vectors and other irregular data structures.

4. Support for heterogeneous environments (e.g., data conversion) is implementation dependent, not part of
the standard. However, an MPI program written for a homogeneous environment would not have to be re-writ-
ten to run with a heterogeneous MPI library.

5. Note that the MPI standard only guarantees that the tag field is 16 bits (0 to 65535). While most implemen-
tations support larger tags, it is advisable to keep tags within this limit.

5

Here,buf , count , anddatatype specify the destination address, size, and the
data type of the message being received.source is used to restrict the receive to
messages sent by a process with a specific rank. Further, tag restricts the receive
to messages sent with the same tag value. These values may be “wildcarded” by
setting them toMPI_ANY_SOURCE or MPI_ANY_TAG if one wants to receive
messages regardless of their source and/or tag.comm is the communicator men-
tioned before. The sending and receiving communicators must match, i.e., commu-
nicators may not be wildcarded like the source and tag fields. status is a
variable in which message “status” informations is stored. This variable can then
be used to determine information about the message received (i.e., size, sender,
tag). Finally, MPI_Recv also returns an error value in the same way as described
for MPI_Send .

Consider a simple example where the following program is run by two processes:

 program pingpong

 include ‘mpif.h’
 integer ierr, rank, status(MPI_STATUS_SIZE)
 double precision buf(10)

c Initialize MPI Environment
 call MPI_Init(ierr)

c Determine your rank in MPI_COMM_WORLD
 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

 if (rank.eq.0) then
c Process 0 sends 10 double precision numbers to 1

call MPI_Send(buf, 10, MPI_DOUBLE_PRECISION,
$ 1, 0, MPI_COMM_WORLD, ierr)

c Process 0 receives 10 double precision numbers from 1
call MPI_Recv(buf, 10, MPI_DOUBLE_PRECISION,

$ 1, 1, MPI_COMM_WORLD, status, ierr)
 else

c Process 1 receives 10 double precision numbers from 0
call MPI_Recv(buf, 10, MPI_DOUBLE_PRECISION,

$ 0, 0, MPI_COMM_WORLD, status, ierr)
c Process 1 sends 10 double precision numbers to 0

call MPI_Send(buf, 10, MPI_DOUBLE_PRECISION,
$ 0, 1, MPI_COMM_WORLD, ierr)
 endif

 call MPI_Finalize(ierr)
 end

In this example, both processes determine what their “ranks” are relative to the
communicatorMPI_COMM_WORLD. Then, process 0 sends a message to process
1, and process 1 sends the data back to 0. Note that in a given communicator, all
processes will be numbered from 0 to N-1 (where N is the total number of pro-

6

cesses). The first message uses a tag value of 0, and the second one uses tag 1.
Each message consists of 10 double precision floating point numbers.

2.2 Collective communication

MPI provides a wide range of collective communication operations including
reductions, scans, broadcasts and barriers. MPI’s collective operations are block-
ing, i.e., all processes must reach the collective operation before any may proceed
past it. As an example, consider the global reduction operation:

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM,
IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

Thus, anMPI_Reduce performs some type of reduction operation as specified by
op (i.e., global sum, global max, global min, etc.) on the variable insendbuf
across all processes belonging to the provided communicator,6 and the result is
returned to the root process inrecvbuf . TheMPI_Allreduce command does
the same thing, but the result is returned to therecvbuf variable in all processes
that belong to the communicator. Therefore, anMPI_Allreduce can be thought
of as anMPI_Reduce followed by a broadcast (MPI_Bcast).7 This second
option is similar to that provided by the “global” functions in Intel’s NX library.

2.3 Groups, Contexts, and Communicators

One of the most powerful, and confusing, aspects of MPI is its use of groups, con-
texts, and communicators to provide a flexible and “safe” programming environ-
ment. All communication performed in MPI involves acommunicator. In its
simplest form, a communicator can be thought of as agroup.8 A group is simply a
mapping from a rank (an integer between 0 and the number of processes - 1) to a
physical process or processor. Therefore, for each communicator there will be a set
of processes, and each process in this set will have a unique rank. Then messages

6. MPI collective communication operations involve only the processes defined by the communicator passed
in to the collective communication routine. If this communicator isMPI_COMM_WORLD, the operation would
involve all available processes. However, as will be detailed in the next section, communicators may only con-
tain a subset of the available processes. This ability to perform collective communication on process subsets is
very important for supporting multidisciplinary and multi-zonal applications.

7. A good implementation ofMPI_Allreduce might use a different algorithm for the reduction and skip
the broadcast.

8. Communicators actually consist of both a group and a “context.” A context is a mechanism that can be used
for protecting communication operations from interfering with each other. It is similar to a tag, but is not wild-
cardable. Therefore, a message sent using one context can not be received using a different context. This can
be very useful for protecting library communication from other messages, but most users need not worry about
this feature.

7

can be sent between processes using this rank. Therefore, as in Figure 1 the actual

processes (A and B) can be represented in different ways. For example, using
MPI_COMM_WORLD, they have ranks 0 and 1 respectively. Further, MPI defines
another communicator, MPI_COMM_SELF, that only contains the calling process.
Therefore, every node will have rank 0 inMPI_COMM_SELF. We could also
define another communicator, comm_reverse , that contains both process A and
B from Figure 1, but reverses their ranks relative toMPI_COMM_WORLD. Thus, A
has rank 0 inMPI_COMM_WORLD, and rank 1 incomm_reverse . B has rank 1
in MPI_COMM_WORLD and rank 0 incomm_reverse . Ranks are used as a short-
hand method of specifying a process, and are only unique within a communicator.
Thus, sending a message from process 0 to process 1 inMPI_COMM_WORLD is
functionally equivalent to sending a message from process 1 to process 0 incom-
m_reverse .

Some simple operations on communicators areMPI_Comm_size andMPI_-
Comm_rank. MPI_Comm_size returns the number of processes defined by a
communicator. MPI_Comm_rank specifies the rank of the calling process relative
to the communicator. These commands are similar tonumnodes andmynode in
NX.

Communicators are not only used for renumbering nodes. They can also be used to
break up the available processes in to disparate groups. Within each subgroup pro-
cesses still have a rank (from zero to the subgroup size minus one). Note that mes-
sages sent using a particular communicator can not be received by any other
communicator. Therefore, messages within a subgroup can not interfere with
another subgroup. In addition, since collective communication operations occur
within a communicator, separate collective operations may occur within each of
these groups. Thus, it is possible to synchronize the processes in one communica-
tor group without involving any processes outside of the communicator in that
synchronization operation.

The easiest way to create subgroups is with theMPI_Comm_split command.
This command is collective, so all processes belonging to the original communica-
tor being spilt (MPI_COMM_WORLD in this example) must call it as follows, in C,

Process A Process B

MPI_COMM_WORLD 0 1

MPI_COMM_SELF 0 0

Figure 1: Rank example.

comm_reverse 1 0

8

MPI_Comm_split(MPI_COMM_WORLD, color, 0, &newcomm);

or, in FORTRAN,

 call MPI_Comm_split(MPI_COMM_WORLD, color, 0, newcomm, ierr)

This routine would then create a new communicator (newcomm) in each process.
The communicator generated in a particular process will include the group of pro-
cesses for which the “color” (the value of the variablecolor) is the same. There-
fore, there may be 1, 2, or more unique groups of processes created by an
MPI_Comm_split command, as many as there are unique “colors.” MPI also
allows processes to specify what rank they wish to be in the new communicator by
giving a “key” (equal to 0 in the example). Ties are broken by the rank in the
source communicator (i.e.,MPI_COMM_WORLD in the example), so if the key
value is 0, the processes will be numbered from 0 to the appropriate group size
with ranking in the same order as in the source communicator. For example, con-

sider Figure 2. Here, each processor callMPI_Comm_split with the color value
shown. This causes 3 different communicators to be created, one for each color.
The communicator to which the calling process belongs is returned innewcomm.
Within each group, processes are still numbered 0 to groupsize - 1. Note that there
is no rank defined for process B in the communicator defined for processes A and
E, thus, there is no way to send a message from process A to B usingnewcomm.
However, it is still possible to send such a message usingMPI_COMM_WORLD.

Now that it is possible to create separate communicators, it is still desirable to have
a mechanism for communicating between these communicator groups. One
method is simply to communicate throughMPI_COMM_WORLD, which all pro-
cesses will be members of. In addition, MPI provides a mechanism for sending
messages between disparate communicators, i.e.,intercommunicators. For exam-

MPI_COMM_WORLD0 1 2 3 4 5

color 0 01 33 3

newcomm

0

0

0

1

1 2

Processes

Figure 2: MPI_Comm_split example.

A B EC D F

9

ple, consider Figure 3. We can send a message from process A to process B in two

different ways. First, we could send a message from 0 to 1 inMPI_COMM_WORLD.
Another option, however, would be to create an intercommunicator between
comm1 andcomm2. Intercommunicators are used the same way as communicators
in MPI_Send andMPI_Recv . However, thedest field in anMPI_Send will be
relative to the remote group (if process A sends a message to a process with rank 0
using an intercommunicator created betweencomm1 andcomm2, the message
would be sent to process B). Thesource field in anMPI_Recv using an inter-
communicator also refers to the remote group (if process B receives a message
from a process with rank 0 using an intercommunicator betweencomm1 and
comm2, the source would be process A). Therefore, to send a message from pro-
cess A to process B using an intercommunicator betweencomm1 andcomm2, the
message would be sent from process 0 to process 0.

To create an intercommunicator, however, some information must be known by
both groups of processes. First, the local processes must know the rank of one pro-
cess from the remote communicator. For this rank to make sense, it must be rela-
tive to some communicator that the local processes creating the intercommunicator
also belong to. The processes, one in each of the communicator groups being
joined, that have a rank known by everyone in both of the groups, are referred to as
the local and remoteleaders. It doesn’t matter which processes are used as the
group leaders, however, by convention, the group leaders in this paper will always
be the processes with rank 0. Therefore, for Figure 3, we can use processes A, B,
and C as the group leaders forcomm1, comm2, andcomm3. The call for creating
an intercommunicator is as follows in C:

MPI_Intercomm_create(local_comm, local_leader, peer_comm,
remote_leader, tag, &newintercomm)

or, in FORTRAN

 call MPI_Intercomm_create(local_comm, local_leader,
$ peer_comm, remote_leader, tag, newintercomm, ierr)

MPI_COMM_WORLD0 1 2 3 4 5

0

0

0

1

1 2

Processes

Figure 3: Intercommunicator example.

A B EC D F

comm1

comm2

comm3

10

wherelocal_comm is the local communicator, local_leader is the rank of
the local leader withinlocal_comm , peer_comm is the communicator to which
both leaders belong (e.g.,MPI_COMM_WORLD), andremote_leader is the
rank of the remote leader withinremote_comm . Therefore, for Figure 3, to join
comm2 andcomm3, local_leader for the processes incomm2 would be 0
with local_comm equal tocomm2 (this of course refers to process B). Remote
leader forcomm2 would then be 2 andpeer_comm would beMPI_COM-
M_WORLD. For the processes incomm3, local_leader would be 0 with
local_comm set tocomm3 (this refers to process C), and remote leader would be
1 with peer_comm set toMPI_COMM_WORLD (referring to process B).The actual
FORTRAN code for creating this intercommunicator betweencomm2 andcomm3
of Figure 3 is as follows.

For processes in comm2:

 call MPI_Intercomm_create(comm2, 0, MPI_COMM_WORLD,
$ 2, tag, intercomm, ierr)

and for processes in comm3:

 call MPI_Intercomm_create(comm3, 0, MPI_COMM_WORLD,
$ 1, tag, intercomm, ierr)

The remaining parameter, tag , is an integer tag used to ensure that instances of
MPI_Intercomm_create don’t conflict, andnewintercomm is the new
intercommunicator to be created.MPI_Intercomm_create is a collective
operation, so all processes in both of the communicator groups must call this oper-
ation at once.

3.0 Implementing Multidisciplinary Applications using MPI

Now, consider how one might map a multidisciplinary application on to MPI. As
an example, consider the application described in Figure 4. Here the program con-

Fluids Code
Structures Code

Multidisciplinary Application

Figure 4: Block diagram of a simple multidisciplinary application.

11

sists of two distinct SPMD applications, one that simulates fluid dynamics (e.g.,
the airflow over an airplane wing), and another that simulates structures (e.g., flex
in an airplane wing). In this example multidisciplinary application, both of these
aspects are simulated to provide a more complete simulation. Ideally, one would
want to simulate all aspects of an aircraft by integrating fluids, structures, thermal
effects, etc. in to a complete multidisciplinary simulation.

3.1 Intra-discipline/zone Communication

As previously stated, one of the most common and successful methods for imple-
menting multidisciplinary and multi-zonal applications is to take existing applica-
tion codes based on a single discipline, and add communication of boundary
information between these application codes to create a unified multidisciplinary
application. Each of these single discipline codes is a SPMD message passing code
with internal point to point and collective communication, I/O, and computation.
The advantage of this technique is that one can use fully tested existing codes and
therefore the development of the multidisciplinary application becomes primarily
an integration problem. The problem, however, is that to use this technique, the
underlying message passing system must allow applications to both operate as
multiple independent SPMD programs, as well as allow communication between
these independent tasks.

Consider how this fits in to the framework of MPI. As with any application, the

appropriate executable is loaded as the proper number of processes. Each process
will have its own rank within the entire application, i.e., inMPI_COMM_WORLD
(see Figure 5). Using this communicator it is possible for any processes to commu-
nicate. However, the problem with this view is that it makes the coding of the sub--
programs much more difficult. For example, withinMPI_COMM_WORLD, the
fluids code processes may be numbered from 0 to 15, but this would mean that the

Fluids Code
Structures Code

Multidisciplinary Application

Figure 5: Block diagram of communicator assignments for a simple
multidisciplinary application.

STRUCTURES_COMM
FLUIDS_COMM

MPI_COMM_WORLD

FS_INTERCOMM

12

first structures code process would be 16. This would require significant re-writing
of the code since all process numbers for the structures code would be offset. In
addition, it would not be possible to perform collective communication within
either of the constituent codes without involving the other codes (since MPI col-
lective communication involves all processes in the provided communicator).
Therefore, one would generally want to splitMPI_COMM_WORLD in to two pieces,
one for each executable code. Again consider Figure 5, one can simply break
MPI_COMM_WORLD in to two communicators, i.e.,FLUIDS_COMM andSTRUC-
TURES_COMM. Within each of these smaller communicators, all processes are
numbered from 0 to N-1 (where N is the number of processes running the code),
processes can now perform collective communication operations within their code
group, and point to point operations within each communicator can not interfere
with any processes outside of the scope of the communicator.

3.2 Inter-discipline/zone Communication

Now that communicators have been defined for communication within each of the
codes, there still needs to be a mechanism for communicating between the codes.
There are two ways that this can be done using MPI. One would be to useMPI_-
COMM_WORLD, and to refer to each process by its rank in this communicator for
inter-group communication. The problem is that this reduces modularity and
increases complexity since it becomes necessary to have every process keep track
of how processes are allocated and the size of every group. For example, to deter-
mine the rank of the first structures code it would be necessary to know how many
processes are allocated for fluids inMPI_COMM_WORLD, and it would also be nec-
essary to know how processes are allocated (e.g., are they allocated in blocks,
cyclically, subcubes, etc.). A better approach is to useintercommunicators as
shown in Figure 5. Intercommunicators allow direct communication between pro-
cesses belonging to disjoint groups and allow processes in one group to send mes-
sages to another using the ranks defined in the remote group. This means that only
a single rank has to be used for each process, whether communication is within a
communicator or to another communicator. Referring to Figure 5, it is possible to
have fluids process 5 send a message to structures process 3 usingFS_INTER-
COMM. To create this communicator one can useMPI_Intercomm_create
(see Section 2.3),however, this still requires the programmer to know some infor-
mation about how processes have been allocated (i.e., who are the group leaders).
Unfortunately, using MPI alone, this information is likely to be system dependent,
and thus will not be portable,

4.0 MPIRUN

The problem that has not been addressed in the previous sections is how to estab-
lish the application structure as shown in Figure 5. In other words, an MPI pro-
gram must be able to:

• load and run the correct executables,

13

• establish communicators for each executable (e.g., for the fluids and structures
application codes), and

• create the fluid-structures intercommunicator.

Loading is external to the scope of MPI, therefore, some machine specific mecha-
nism must be used for loading the executables. Next, to establish the group com-
municators each process can simply feed an integer representing its executable
group in to the “color” field of MPI_Comm_split . This can be provided in one
of two ways, either the color can be hard-coded into each executable, or the color
values can be distributed at run-time. The first approach is unacceptable because it
requires re-compilation any time the number of zones or disciplines is changed,
and it means that one must have separate executables for each zone in a multi--
zonal application (i.e., where the same code is applied to different data sets each
representing a zone). A better solution is to have this information distributed after
the program is loaded. The final step is to set up intercommunicators. For this it is
necessary to establish “well known” group leaders so that intercommunicators can
be established withMPI_Intercomm_create . This can also be coded stati-
cally, but is also better done at run time to enhance flexibility and code re-use.

While it is possible to establish the correct environment on any machine, it is not
possible to do so portably using MPI alone. Loading is completely non-portable.
On a Paragon, loading is done withnx_load , on an iPSC/860 loading is done
with load , on workstations loading is dependant on the underlying parallel envi-
ronment being used (e.g., Argonne P4 [BuL92], PVM [GeB93], UNIX, IBM’s
POE [Ibm94]), etc. Further, since loading can be different, the means for distribut-
ing process allocation information at run time will also be non-portable. To sim-
plify the process and to provide a portable means for specifying MPI applications,
the MPIRUN loader was developed at NASA Ames. MPIRUN can be built on top
of any implementation of MPI, and provides mechanisms for loading, establishes
communicators for each executable, and distributes information about group lead-
ers. Because MPIRUN contains all of the machine specific operations, programs
using MPIRUN for loading and MPI for communication will be portable to any
platform to which MPIRUN has been ported (currently MPIRUN runs on the Intel
iPSC/860 and Paragon, workstations running MPI on top of P4, the IBM SP series,
and the Thinking Machines CM-5).

MPIRUN can be used to start any MPI application, regardless of whether the pro-
gram uses any of MPIRUN’s special features. However, to use MPIRUN’s ability
to establish a multidisciplinary/multi-zonal application environment, MPIRUN
application codes must link in the MPIRUN library as well as the native MPI
library. They must also include the file “mpirun.h ” (for C) or “mpirunf.h ”
(for FORTRAN). Finally, an MPIRUN application code must call the routine
MPIRUN_Init immediately after callingMPI_Init , i.e, before any MPIRUN
functions are called. Note thatMPIRUN_Init uses MPI functions and therefore it
will not work unlessMPI_Init has been called first.

14

To run an MPIRUN program, the “mpirun ” command is used.mpirun allows
the user to specify what executables are to be loaded as well as how many pro-
cesses should run each executable. Each of these sets of processes running a given
executable is known as anMPIRUN SPMD application. mpirun also allows the
user to pass arguments to the underlying system as well as to the user program.
Processes are allocated bympirun , assigned to MPI groups (encompassing each
of the MPIRUN SPMD applications specified on thempirun command line), and
a communicator is formed for each group. In addition to starting processes and
forming initial groups for each MPIRUN SPMD application, MPIRUN also cre-
ates several variables that enable a user to easily establish intercommunicators.

Again consider the fluid-structures example, here shown in Figure 6, the applica-

tion consists of two MPI groups representing each MPIRUN SPMD application,
each existing withinMPI_COMM_WORLD. To aid in establishing this structure, the
following pre-defined variables are provided by MPIRUN:MPIRUN_APP_-
COMM, MPIRUN_NUM_APPS, MPIRUN_APP_ID, and MPIRUN_AP-
P_LEADERS.

MPIRUN_APP_COMM

This is a communicator available to each process representing the set of processes
to that belong to the same MPIRUN SPMD application as the calling process. This
means that this communicator will be different for each MPIRUN SPMD applica-
tion specified on thempirun command line, however, the name is uniform
throughout an MPIRUN program. This communicator should be used as the basis
for communication inside of each SPMD application. For example, referring to
Figure 6, a process running the fluids code can communicate to another fluids pro-
cess usingMPIRUN_APP_COMM. In addition, a structures process can communi-
cate to a structures process usingMPIRUN_APP_COMM. However, for a fluids
process to communicate with a structures process an intercommunicator will have
to be formed.

Fluids Code
Structures Code

Multidisciplinary Application

Figure 6: Block diagram of communicator assignments for a simple
multidisciplinary application using MPIRUN.

MPIRUN_APP_COMM
MPIRUN_APP_COMM

FS_INTERCOMM

MPI_COMM_WORLD

(App 0)
(App 1)

15

MPIRUN_NUM_APPS

This is simply the number of MPIRUN SPMD applications started bympirun .
Therefore for Figure 6,MPIRUN_NUM_APPS would be equal to 2.

MPIRUN_APP_ID

This is the “SPMD application ID” for the SPMD applications started bympirun .
Each MPIRUN SPMD application will have a unique ID ranging from 0 to
MPIRUN_NUM_APPS-1. The variableMPIRUN_APP_ID is defined in every pro-
cess as the application ID for the MPIRUN SPMD application to which the pro-
cess belongs. Application IDs are allocated by MPIRUN following a deterministic
allocation strategy. Thempirun command line is parsed from left to right, and as
it is parsed, groups are allocated starting with application ID 0. Using this alloca-
tion strategy it should be possible to decide the application ID for a given
MPIRUN group prior to run-time, so that programs can use application IDs to
determine what applications belong to what groups. Thus, referring to Figure 6, the
application may have been started with the following command:

mpirun -np 64 f luids_code : -np 32 structures_code

Thus, the fluids code would haveMPIRUN_APP_ID equal to 0 and would be run-
ning on 64 processes, and the structures code would haveMPIRUN_APP_ID
equal to 1 and would run on 32 processes.

MPIRUN_APP_LEADERS

MPIRUN_APP_LEADERS is an array intended to facilitate the creation of inter-
communicators. Recall that theMPI_Intercomm_create command requires
the calling process to know the rank of at least one member of the remote group
relative to some common communicator. Simply put, this rank is exactly what
MPIRUN_APP_LEADERS provides. More specifically, MPIRUN_APP_LEAD-
ERS[ID] is defined as the rank relative toMPI_COMM_WORLD of the process
within MPIRUN SPMD application numberID with rank 0. For the example in
Figure 6 we could form the intercommunicatorFS_INTERCOMM by having every
user process execute the following sequence in C:

if (MPIRUN_APP_COMM == 0)
ret=MPI_Intercomm_create(MPIRUN_APP_COMM, 0, MPI_COMM_WORLD,

MPIRUN_APP_LEADERS[1], 0, &FS_INTERCOMM);
else

ret=MPI_Intercomm_create(MPIRUN_APP_COMM, 0, MPI_COMM_WORLD,
MPIRUN_APP_LEADERS[0], 0, &FS_INTERCOMM);

or, in FORTRAN:

 if (MPIRUN_APP_COMM .eq. 0)
call MPI_Intercomm_create(MPIRUN_APP_COMM, 0,

$ MPI_COMM_WORLD,MPIRUN_APP_LEADERS(1), 0,
$ FS_INTERCOMM, ierr)
 else

call MPI_Intercomm_create(MPIRUN_APP_COMM, 0,
$ MPI_COMM_WORLD, MPIRUN_APP_LEADERS(0), 0,
$ FS_INTERCOMM, ierr)

16

 endif

For more details on both thempirun command and on the special features pro-
vided to MPIRUN applications, see thempirun man page. To find out how to
obtain the MPIRUN package send e-mail tof ineberg@nas.nasa.gov .

5.0 Performance

In this section MPI will be briefly compared with the native message passing layer
on three systems, the IBM SP-1, the IBM SP-2, and the Intel Paragon. The best
version of MPI currently available for the Paragon is the Argonne/MS State imple-
mentation9 (MPICH), however, for the SP-1 and SP-2 there is an IBM developed
version of MPI available (MPI-F) [Fra94] as well as MPICH. Referring to Table 1,

the latency and bandwidth of the MPI libraries were compared to the fastest pro-
prietary vendor libraries.10 These libraries are MPL/p for the SP-1, which is a fast
version of MPL developed by IBM research specifically for the SP-1 (also known
as EUIH). For the SP-2, MPL is the normal SP-2 message passing library, there is
no IBM research version of MPL for the SP-2. For the Paragon, the only vendor
supplied library is NX.

As can be see from Table 1, there is a significant, but not prohibitive, penalty for
using a non-vendor supplied MPI implementation (i.e., MPICH) for point-to-point
communication. This effect appears as higher latency and in some cases lower
bandwidth. For most systems, only the latency is effected, however, in the case of
the Paragon, memory copying is quite slow and this limits the performance of
MPICH since it adds an extra buffering step.11 On the SP-2, memory copies are
fast, so MPICH has higher latency but virtually identical bandwidth (see Figures 7
and 8). For the vendor supplied version of MPI (MPI-F), the penalty is essentially
non-existent on the SP-1, and the MPI-F performance is measurably better than
MPL on the SP-2. While this advantage of MPI-F over MPL is probably due to

9. This MPI implementation is available via anonymous FTP atinfo.mcs.anl.gov .

10. These experiments were run in August and September 1994. The SP-2 used has 64 “wide” processing
nodes with 128 MB of RAM per node. The Paragon had 208 compute nodes, 32MB per node, and the commu-
nication coprocessors were not enabled. The SP-1 had 128 nodes, 64MB/node.

11. This effect would probably have been less had the communication coprocessor been enabled, however,
this was not available on the NAS Paragon at the time the experiments were performed.

TABLE 1. Message Passing Library Performance

Machine Message
Layer

Latency
(µsec)

Bandwidth
(MB/sec)

Paragon NX 149 43.2
Paragon MPICH 201 28.0
SP-1 MPL/p 36 8.8
SP-1 MPI-F 37 8.8
SP-2 MPL 43 35.6
SP-2 MPICH 52 35.5
SP-2 MPI-F 41 35.6

17

optimizations used by IBM research that were not possible in the “production”
message passing library, it provides evidence that there are no “flaws” in MPI pre-
venting it from performing well.

For collective communication, even with the added complexity of communicators,
MPI-F also performs better than MPL on the SP-2. In Figures 9 and 10, two repre-
sentative forms of collective communication are shown for the SP-2, barrier syn-
chronization and broadcast of a 1K message. As can be seen, MPI-F gets
consistently better collective communication performance over MPL and MPICH.
This is due to two factors, the lower latency of MPI-F, and the use of better algo-
rithms than MPL. The algorithmic improvement is most evident for Barrier Syn-
chronization. MPICH is significantly worse than MPL, however the performance
loss is less than a factor of two. This is relatively good given the approximately
20% higher latency provided by MPICH.

0.0 200.0 400.0 600.0 800.0 1000.0

Message Size (bytes)

40.0

60.0

80.0

100.0

120.0

T
im

e
(m

ic
ro

se
co

nd
s)

Figure 7: Comparison of SP-2 Message Latency

Native (MPL)
IBM Research MPI (MPI-F)
Argonne/MS State MPI (MPICH)

0.0e+00 5.0e+05 1.0e+06

Message Size (Bytes)

0.0

10.0

20.0

30.0

B
an

dw
id

th
 (

M
B

/s
ec

)

Figure 8: Comparison of SP-2 Message Bandwidth

Native (MPL)
IBM Research MPI (MPI-F)
Argonne/MS State MPI (MPICH)

18

6.0 Summary

In this paper it has been shown that it is possible to create multidisciplinary appli-
cations using MPI for communication and that MPI is capable of providing perfor-
mance commensurate with proprietary message passing libraries. Further, a
portable loader interface has been created to simplify program initiation enable
these MPI codes to be portable. Thus, using MPI and MPIRUN it is now possible
to create portable multidisciplinary and multi-zonal applications. Further, the
MPIRUN interface was designed to be generic enough so that it can be imple-
mented on any MIMD architecture, as evidenced by the variety of machines it cur-
rently runs on.

0.0 10.0 20.0 30.0

Number of Processors

0.0

200.0

400.0

600.0

B
ar

rie
r

S
yn

c
T

im
e

(m
ic

ro
se

co
nd

s)

Figure 9: Comparison of SP-2 Synchronization Performance

Native (MPL)
IBM Research MPI (MPIF)
Argonne/MS State MPI (MPICH)

0.0 10.0 20.0 30.0
Number of Processors

0.0

100.0

200.0

300.0

1K
 M

es
sa

ge
 B

ro
ad

ca
st

 T
im

e
(m

ic
ro

se
cs

)

Figure 10: Comparison of SP-2 Broadcast Performance

Native (MPL)
IBM Research MPI (MPIF)
Argonne/MS State MPI (MPICH)

19

7.0 References12

[BaW93] E. Barszcz, S. Weeratunga, and E. Pramono,A Model for Executing
Multidisciplinary and Multizonal Programs, Report Number
RNR-93-009, NASA Ames Research Center, 1993.

[Bar91] E. Barszcz,Intercube Communication for the iPSC/860, Report Num-
ber RNR-91-030, NASA Ames Research Center, 1991.

[BuL92] R. Butler and E. Lusk,User’s Guide to the P4 Programming System,
Tech. Report RM-ANL-92/17, Argonne National Laboratory, 1992.

[Fin93c] S. Fineberg, Implementing the NHT-1 Application I/O Benchmark,
Report RND-93-007, NASA Ames Research Center, 1993.

[Fra94] H. Franke,MPI-F: An MPI Implementation for IBM SP-1/SP-2, Ver-
sion 1.30, Technical Report, IBM T. J. Watson Research Center, 1994.

[GeB93] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sundaram,PVM 3 User’s Guide and Reference Manual, Report ORN-
L/TM-12187, Engineering, Physics, and Mathematics Division, Mathe-
matical Sciences Section, Oak Ridge National Laboratory, 1993.

[GeS91] G. Geist and V. Sunderam,Network Based Concurrent Computing on
the PVM System, Tech. Report TM-11760, Oak Ridge National Labora-
tory, 1991.

[Ibm94] IBM, IBM AIX Parallel Environment Operation and Use Release 2.0,
International Business Machines Corp., 1994.

[Mes94] Message Passing Interface Forum,MPI: A Message-Passing Interface
Standard, Computer Science Dept. Technical Report CS-94-230, Uni-
versity of Tennessee, 1994.

12. NAS technical reports are available by sending e-mail todoc-center@nas.nasa.gov or via WWW
at URL: “http://www.na.nasa.gov ”.

20

���������
	 ������������������������ �������! "�!#%$&����������')(+*,')��
� ��������-.0/1��')�324��������$1')���/5��#768#%������� 9:�

; ��<�')=>�?$1')(+��@A������*B')�C D�A<�/1(&/5�E�F<G��*D(+��=H����IJ�K
��<G�!#L�A��$&<G�G��$1')�3(+���M/1(+�%N)��<�')=H�OIP/1(+Q"�R SIT����<T��<G�
')����<�/5(&UA#WVX�%/Y����#%��(Z�[$&�!')(+����*S/1@��:(+�K#%���G�%')���!/1�J')��
����$)<G�G��$1')�\')$&$&��()')$&*:N)���%')Q"�O�:��(&#W/5��')��(+�R#%�E/1�C#]��-
^ ��������*D@_/5(`��<G�baF�M')������*,/1@���<G�!#c d/1$)�������G�%N�e
f ��gXhF�ji�	
kOlnm4�
	
f ��gXhF�ji�	
kOlnm4�
	

o_pKq1r�sutwvxsupKs�r�yz0{ y}|~y}vx�w���

�X� |�surZ���%�%r�qt����x���y}y�vx�!�K� �X��jsu�%qr�|�� {%z0� s�ru� �[�K�K�!��� �jiG	��n�

